
API VERSIONING IS FOR EVERYONE!



API Versioning





Versioning 

HTTP API

gRPC Service

GraphQL Server



The need for API versioning



• Maintain backwards compatibility

• Make changes to API without disrupting clients

• Allow API consumers to update at their own pace

• Phased introduction of breaking changes

• Reduce client-server coupling



When to version your API?



API versioning is not always 
the answer



Let clients embrace or ignore changes



BREAKING 
CHANGES



• Changes in contract - Request, Response, Endpoints names

• Changes in application logic*

• Changes in error code or fault contracts

• Removing part of API

• Anything that violates the Principle of Least Astonishment



Version Number 
Strategy



• SemVer – <Major.Minor.Patch>

• Major Versions only – <Major>

• Major.Minor - <Major.Minor>

• Date of release as the version – <yyyy-mm-dd>

• GroupVersion, internally interpreted as a version - <yyyy-mm-dd>



Keep it consistent!



HTTP API



Resources



Reuse HTTP



Status CodeResponse BodyRequest BodyUrlHTTP Verb

200OK/404 Not 
Found

/weatherforecast
/weatherforecast/{id}GET

201 Created/weatherforecastPOST

200OK/204 No 
Content/ 202 

Accepted
/weatherforecast/{id}PUT

204 No 
Content/404 Not 

Found
/weatherforecast/{id}DELETE



Reuse HTTP for Versioning



• Version by query string

• Version by header

• Version by media type

• Version by url



dotnet add package Asp.Versioning.Mvc --version 7.0.0



• Controllers of same name with different 
[ApiVersion(v)] attributes 

• Different namespaces



• Controllers of different names with different 
[ApiVersion(v)] attributes - nameController , 
name#Controller

• Same namespace



Version Interleaving





Not possible to have a default version for your API via url segment





Deprecating Versions



API Versions can be marked deprecated



Define Sunset HTTP header in the response to indicate when the API 
will disappear 



Remove the controller for the version



gRPC



Modern, high-performance, open-source 
Remote Procedure Call Framework



• Google’s implementation of RPC

• Officially supported from .NET Core 3.0

• Contract-based API development



@poornimanayar



@poornimanayar

Greeter.GreeterBase – abstract class

HelloRequest – C# class

HelloReply – C# class

SayHello() – virtual method



@poornimanayar

Greeter.GreeterClient

HelloRequest

HelloReply

SayHello()



@poornimanayar

• Both(default)
• Server
• Client
• None



• Smaller and faster than JSON

• Transmitted in binary format

• Value of each field serialised against the unique identifier for that field



BREAKING CHANGES



• Changing field data type

• Changing field number

• Renaming a package, service or method

• Removing a service or method



Deprecating Versions





GraphQL



GraphQL is a query language



Supported by a runtime for fulfilling your queries



Single, smart endpoint that takes in complex 
queries and builds the data output



• Clients specify the shape of the data they need

• Server responds with the exact same data graph as the query

• Query related entities



Client-focused, experience driven



Specification



Various implementations



Hot Chocolate

GraphQL.NET



Object Types Queries Mutations Subscriptions

SCHEMA

Representation of 
object

Read data Insert/Update/
Delete data

Pushed Updates

Types



Name Type Resolvers

FIELDS

Type of the field Methods that help 
fields resolve to data

Name of the field



Creating Types Using Hot Chocolate



Object Type

Public properties = Fields

“get” = Resolver



Query

“Places” field

Resolver



Startup

Add a graphql server

Map endpoint “/graphql”



GraphQL is version free



Multiple schemas on same server



Extend Query

“RandomPlace” field



Startup

Add a new server 
“newgraphql”

Map a new endpoint 
“/newgraphql”





Documentation



• Elements, Redoc, Postman, Swaggerhub

• GenDocu for gRPC Service

• SpectaQL, MagiDoc, DociQL, GraphDoc for 

GraphQL



Key Takeaways



Not a book of rules!



Strategy & Best Practice



• Always consider a path of no/least breaking changes

• Adopt API Versioning for breaking changes

• Keep your versioning strategy consistent

• Share your API Contract

• Document! Document! Document!

• Communicate! Communicate ! Communicate!

• Sunset old API versions regularly

• Try and adopt an api versioning strategy early on in your project



API CLIENTS ARE USERS!



https://bit.ly/version-apis

@poornimanayar


