
REST, GRAPHQL & gRPC – A 
COMPARISON



• Poornima Nayar

• Freelance .NET Developer

• Langley, Berkshire

• Mother, Reading, Carnatic Music

• @poornimanayar



#notadebate

#compare







gRPC is a modern open-source, high performance 
Remote Procedure Call (RPC) framework 



REMOTE PROCEDURE CALL

“A remote procedure call is when a computer program causes a procedure to 

execute in another address space (commonly another computer) , which is 

coded as if it were a normal procedure call, without the programmer explicitly 

coding the details for the remote interaction.”





Client Functions

Client Stub

RPC Runtime RPC Runtime

Server Stub

Server Functions

Client server

Marshalling

Unmarshalling



gRPC

• Google’s implementation of RPC

• Initially called Project Stubby

• Made open-source and called gRPC in March 2015 (next version)

• Officially supported in .NET Core 3.0+

• Contract-based API development

• Designed for HTTP/2



PROTOCOL BUFFERS

• Google’s open-source mechanism to serialize structured data

• Language-neutral, platform-neutral, extensible

• Data is structured as messages

• Each message is a record of key-value pairs called fields

• Messages are transmitted in binary format



.PROTO FILES 

• The contract of the API

• Definition of the gRPC service

• Procedures

• Messages sent between the client and the server





Greeter.GreeterBase

HelloRequest

HelloReply



Greeter.GreeterClient



• Both (default)
• None



• GetUsers()

• GetUserById()

• CreateUser()

• UpdateUser()

• DeleteUser()



• GetStoriesForUser()

• GetStoryById()

• GetTopUserStories()

• GetStoryComments()

• GetLatestActivity()



gRPC METHODS

• Unary

• Server Streaming

• Client Streaming

• Bidirectional Streaming



METADATA

• Request headers

• Response headers

• Response trailers

• Response trailers are served after the response is complete 



• Lightweight messages

• High performance

• Built in code generation

• Streaming options

• Reduced network usage with protocol buffers

• Scalable



• Tightly coupled client and server

• Limited browser support

• Relies on HTTP/2 

• Zero discoverability

• Function explosion

• Not human readable (binary format)



This Photo by Unknown Author is licensed under CC BY-NC

https://recursospython.com/guias-y-manuales/api-rest-twisted-klein/
https://creativecommons.org/licenses/by-nc/3.0/


❖ Acronym for REpresentational State Transfer

❖ First presented by Roy Fielding in 2000

❖ Architectural style for distributed hypermedia systems





Resource identifier



Data + Metadata + Hypermedia links = Resource Representation



• Client-server

• Stateless

• Cacheable

• Uniform Interface

• Layered Systems

• Code on demand(optional)

REST CONSTRAINTS



REST != JSON over HTTP



REST != ‘RESTFUL’ PROCEDURE CALLS



REST != HTTP



Reuse HTTP



ROOT Entry Point 
https://api.xyz.com

https://api.xyz.com/




HTTP Verb URI Request Body Response Body Status Code

GET /users
/users/{id} 200 Ok/ 404 Not Found

POST /users
201 Created with the 
URI of resource in the 

Location Header

PUT /users/{id} 
200 Ok / 204 No 

Content/ 202 Accepted/ 
409 Conflict

DELETE /users/{id} 204 No Content / 404 
Not Found



• GetStoriesForUser()

• GetStoryComments()



HATEOAS – REST NIRVANA
Hypermedia as the Engine of Application State



Picture Courtesy : Richardson Maturity Model (martinfowler.com)

https://martinfowler.com/articles/richardsonMaturityModel.html




• HAL (Hypertext Application Language) , WIP standard convention

• application/hal+xml , application/hal+json



• Decoupled client and server

• API can evolve over time

• Scalable

• Seamless integration and reuse HTTP

• Easy to consume

• Superior browser support



• Chatty

• No single spec

• Big payloads

• Overfetching

• Underfetching

• N+1 problem



This Photo by Unknown Author is licensed under CC BY-SA

https://www.freesion.com/article/67601031375/
https://creativecommons.org/licenses/by-sa/3.0/


GraphQL is a query language for APIs and a runtime for 

fulfilling those queries with your existing data. 



Specify types and ask for specific fields on those types



Single, smart endpoint that takes in complex queries and 

builds the data output



The clients specify the shape of the data that they need, and the server responds back with the exact same 
data graph as the query.





• Strongly Typed

• Specification

• Introspective

• Hierarchical

• JSON response that mirrors the query

• Application Layer

• Version Free

• Transport-layer agnostic



THE GRAPHQL SCHEMA



Object Types Queries Mutations Subscriptions

SCHEMA

Representation of 

object
Get data

Insert/Update/

Delete data
Pushed Updates

Types



Name
Scalar/Complex 

Types
Resolvers

FIELDS

Name of the field Type of the field Resolve the field to 
concrete data



Query



• One of the operation types in GraphQL

• Top-level entry point for read operations

• Get/fetch the data, ask for specific fields on objects using a POST operation

• query keyword, although not needed, best practice

• Hierarchical JSON response that mirrors the query



MUTATIONS

This Photo by Unknown Author is licensed under CC BY

http://esheninger.blogspot.com/2012/07/change-should-be-reality-not.html
https://creativecommons.org/licenses/by/3.0/


• Top-level entry point for write operations

• HTTP POST

• mutation keyword

• Accepts a InputType as an argument



SUBSCRIPTIONS



• Updates are pushed from the server, not polled by client

• Clients can choose to listen

• Works over WebSockets

• HTTP POST

• subscription keyword

• Subscriptions are stateful



Type Fields

Query users, user

Mutation
createUser, updateUser, 

deleteUser

Subscription
userAdded, 

userUpdated, 
userDeleted





• Exact Fetching

• Loosely coupled client and server

• Autogenerating API documentation

• Version Free



• Caching complexity

• File uploading

• Performance with complex queries

• Learning curve

• Growing community



How they compare



REST GRAPHQL gRPC
Fundamental Unit Resources Query Function

Coupling Low Low High

Chattiness High Low Medium

Caching HTTP Custom Custom

Discoverability Good Good Bad

Versioning Can be needed No versioning Can be needed

Statefulness Stateless
Stateless(Query, 

Mutation) Stateless



REST GRAPHQL gRPC

Performance Good Can suffer on complex 
queries Good

Payload size Can get heavy Medium Lightweight

Payload format Human Readable (JSON) Human Readable (JSON) Binary

Browser support Yes Yes No (requires gRPC-web)

Standard Only best practices Formal Specification Formal Specification

Maturity Mature Still early Still early

Learning Curve Medium High Medium

Learning Resources Many resources Few resources Few resources



REST GRAPHQL gRPC

.NET Support Out-of-the-box Third-party 
implementations Out-of-the-box

Visual Studio Support Out-of-the-box
templates External Templates Out-of-the-box

templates

Hosting (Azure)
App Service, Azure 

Functions
App Service, Azure 

Functions
Azure Kubernetes Service,

App Service



TOOLS



• Swagger UI

• Postman

• Command Line

• REST Client (VS Code extension)

REST



• GraphiQL

• GraphQL Playground

• Insomnia

• Banana Cake Pop

GRAPHQL



• gRPCCurl

• grpcui

• BloomRPC

gRPC



USE CASES



• Management APIs (CRUD)

• Focus on objects / resources

• Varied client usage

• Microservices



• Mobile API

• Where data is like a graph/relational

• Where data needs fetching from multiple APIs



• Action oriented APIs

• Internal services

• Microservices

• IOT

• Polyglot environments



https://bit.ly/ddd-api-compare

https://bit.ly/ddd-api-compare


THANK YOU


