
grpc – beyond the basics

gRPC is a modern, open-source, high performance
Remote Procedure Call (RPC) framework

• Officially supported from .NET Core 3.0

• Contract-based API development

• Designed for HTTP/2 and beyond

gRPC

• Microservices

• IoT devices

• Polyglot environments

• Streaming requirements

gRPC

gRPC IN ACTION

 Contract definition - .proto file

 Code generated on server and client

 Server – Abstract base class with virtual methods,

messages as POCO

 Client – Client with stub methods , messages as POCO

 Client apps require generated gRPC client to communicate

with the server

 Grpc.Tools used for code generation using

the protoc compiler

• C#

• C++

• Dart

• Go

• Java

• Kotlin

• Node

• Objective-C

• PHP

• Python

• Ruby

• Third-Party Add-ons -

https://bit.ly/protobuf-thirdparty

PROTOC COMPILER SUPPORT

PROTOCOL BUFFERS

The name Protocol Buffer originates from a class
of the same name used as a buffer

• Google’s open-source mechanism to serialize structured data

• Language-neutral, platform-neutral, extensible to serialize
data in both forward-compatible and backward-compatible
way

• Interface Definition Language

• Message Exchange format

• Requests and Responses

• Each message is a record of key-value pairs called fields

• Messages are transmitted in binary format

• Unique sequence number used as field identifier

MESSAGES

2^29-1 fields possible!

C# TypeProtobuf Type

intint32

longint64

uintuint32

ulonguint64

intsint32

longsint64

uintfixed32

ulongfixed64

intsfixed32

longsfixed64

Doubledouble

floatFloat

boolbool

stringstring

Google.Protobuf.ByteStringbytes

Collections - Repeated

Like arrays/lists in C#

Read-only field, cannot be set to null or
another list

Any scalar or nested types can be repeated

Collections - Map

Like dictionaries in C#

Read-only field, cannot be set to null or
another dictionary

Key must be int/string type, value can be
any scalar or nested type

Datetime
• No built-in scalar in Protobuf to represent date and time

• Use the Google Well-Known Types

• Fields are never null, assigned default values for the type

• Presence or absence of a field

• Proto3 uses no presence semantics, assumes that every field present in a
message has value

• When serialized, fields with default value are not serialized

• 0 for numeric types

• Enum with 0 value

• Empty string, empty list

FIELD PRESENCE

• Default value for a field can mean

• field was explicitly set to default value

• field was cleared by setting it to default value

• field was never set

FIELD PRESENCE

GRPC
MODES

Client Server

Request Message

Response Message

Send device reading in and get a response

UNARY

• Call starts with client sending a message, ends with response
returned

• .NET gRPC client implementation gives choice of blocking and non-
blocking call

Get a stream of readings for a given date

SERVER STREAMING

Client Server

Request Message

Stream

• Client sends a single request object, triggering the stream to open

• Server streams multiple objects back to client

• Client cannot send additional data once server has started
streaming

• Message placed on the stream immediately available to client

• Specify deadlines or cancellations to abort long running streams

Stream readings to server for processing

CLIENT STREAMING

Client Server

Stream

Response Message

• Streaming starts with client invoking the method

• Client places messages to the stream

• Server is notified by the client when streaming is finished

• Server processes the messages and sends the response, status and
metadata back to the client

• Ideal when you want to send a large dataset as chunks

Process a stream of readings

BI-DIRECTIONAL STREAMING

Client Server

Request Message

Response Message

• Streaming starts with client invoking the method

• Independent client and server streams

• Client and server can stream one after another or server can send
a response for every client request

• Method is complete when streaming completes from server and
status and metadata has been sent back

GRPC DEADLINE

• Specifies how long the client will wait for the call to complete

• Sets the upper limit on how long the call can run for

• Prevents services from running forever and exhausting resources

• Client throws a deadline exceeded exception which can be handled on the

client

• On server, a cancellation token is raised that must be passed to any child calls

as well

METADATA

• Request headers

• Response headers

• Response headers are sent alongside the response

• Response trailers

• Response trailers are served after the response is complete

• Response headers contain information about the call

• Response trailers are about the response!

GRPC
INTERCEPTORS

• Allows app to interact with incoming or outgoing gRPC calls

• Construct a pipeline for gRPC request

• Common use cases includes logging, validation, monitoring, authentication

• Client & Server Interceptors

• Middleware runs for all HTTP requests, before gRPC interceptors

• Interceptors act only on gRPC layer

MIDDLEWARE V/S INTERCEPTORS

Interceptor methods to override on the server

 UnaryServerHandler – for unary RPC

 ClientStreamingServerHandler – for client streaming RPC

 ServerStreamingServerHandler – for server streaming RPC

 DuplexStreamingServerHandler – for bi-directional RPC

Interceptor methods to override on the client

 BlockingUnaryCall – for blocking RPC

 AsyncUnaryCall – for unary RPC

 AsyncClientStreamingCall – for client streaming RPC

 AsyncServerStreamingCall – for server streaming RPC

 AsyncDuplexStreamingCall – for bi-directional RPC

GRPC JSON TRANSCODING

Action-oriented gRPC meets resource-oriented
HTTP API

• Extension to ASP.NET Core, feature for mapping between a gRPC
method and HTTP endpoints

• Build a single API service that supports both gRPC and HTTP APIs

• Clients can use the endpoint without a generated client

• gRPC service is still intact

• Previously called gRPC HTTP API (experimental), shipped with
.NET 7

gRPC Client

gRPC Service

HTTP/2 POST, Protobuf

Response, Protobuf

Protobuf

REST Client

gRPC Service

System.Text.Json

HTTP/1.1, HTTP/2, JSON, HTTP Verbs

Response (JSON)

• Experimental OpenAPI Support

• Wider reach to the API beyond gRPC Clients

• Defines the schema of gRPC-HTTP API mapping

• Typically specified as an annotation on the gRPC method using

grpc.api.http

• Each mapping specifies a URL path template and an HTTP method(GET,

POST, PUT, PATCH, DELETE)

@poornimanayar

HOSTING GRPC
SERVICES

• Azure Container Apps

• Azure App Service (Linux Plans only, gRPC-Web on

Windows plans)

• Azure Kubernetes Service

• Windows Server 2022

@poornimanayar

https://bit.ly/grpc-in-dotnet

